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Abstract. The Pearl River Delta in the People’s Republic of China is experiencing
rapid rates of economic growth. Government directives in the late 1970s and
early 1980s spurred economic development that has led to widespread land
conversion. In this study, we monitor land-use through a nested hierarchy of
land-cover. Change vectors of Tasseled Cap brightness, greenness and wetness
of Landsat Thematic Mapper (TM) images are combined with the brightness,
greenness, wetness values from the initial date of imagery to map four stable
classes and � ve changes classes. Most of the land-use change is conversion from
agricultural land to urban areas. Results indicate that urban areas have increased
by more than 300% between 1988 and 1996. Field assessments con� rm a high
overall accuracy of the land-use change map (93.5%) and support the use of
change vectors and multidate Landsat TM imagery to monitor land-use change.
Results con� rm the importance of � eld-based accuracy assessment to identify
problems in a land-use map and to improve area estimates for each class.

1. Introduction
The Pearl River (Zhujiang) Delta in the Guangdong Province is one of the fastest

developing regions in China. Between 1985 and 1997, the Province’s GDP grew at
an average annual rate of 15.3% (Guangdong Statistical Bureau 1998). Two driving
forces spur this rapid rate. First, the establishment of Special Economic Zones (SEZs)
in the Guangdong Province by the China National People’s Congress have opened
the doors to trade and commerce from abroad. The purposes of SEZs are: (1) to
attract foreign investment, (2 ) to test and evaluate diVerent economic policies, and
(3) to increase exports (Wu 1989, Ning 1991, Chu 1998). Secondly, and perhaps
equally important to the development of the Delta, is its proximity to Hong Kong
and the cultural ties to overseas Chinese investors. Foreign direct investment in
Guangdong comes largely from overseas Chinese investors in Hong Kong, Taiwan,
Singapore and the USA. Relative to Hong Kong, land rents and labour in China
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are inexpensive, and SEZs have accelerated the migration of businesses and light
industry across the border.

Rapid rates of economic development have had myriad impacts on the residents
and the landscape. Most evidently for residents, economic development has increased
per capita income, which has increased the ownership of private vehicles and
homes. From 1994 to 1997, the number of motor vehicles in the provincial capital,
Guangzhou, increased by 45% and the amount of living space per capita has more
than doubled between 1980 and 1997 (Guangdong Statistical Bureau various years) .
In China, as in most developing countries, a rise in income leads to an increase in
the consumption of luxury goods such as meat products (Sicular 1985). This increased
demand for meat often accompanies an increase in basic dietary standards, raising
the demand for grain production both for direct consumption and for livestock feed.
The rise in grain demand can be met by expanding or intensifying production. The
possibility of expanding production is constrained in the Pearl River Delta by the
increasing demand for space by a burgeoning transportation network and residential,
industrial and commercial construction. The net eVect is a reduction in the amount
of land available for agricultural production.

Between 1979–81 and 1989–91, approximately 4% of total cropland and 6.5%
of total forest cover in China were converted for other uses. The Chinese Academy
of Sciences estimates that 333 000 ha of farmland are converted to industrial,
commercial and residential uses each year (World Resources Institute 1994). Others
estimate that economic activity in the 1990s will result in the conversion of 3 to
6 million ha of agricultural land into urban areas (Smil 1993). A recent study indicates
that development has spurred accelerated land conversion in one county of the
Guangdong Province (Li and Yeh 1998). However, reliable area estimates of land-
use change for a large part of the Delta are not available and the driving forces
behind the land-use conversions are not well understood. OYcial statistics on
cultivated land and land-use are probably biased due to tendencies to overestimate
production and underestimate the amount of cultivated land (Smil 1995).

To understand the socio-economic driving forces behind land-use change, we are
engaged in a two-part eVort to: (1) estimate land-use change over time for a cross-
section of counties in the Pearl River Delta, and (2) incorporate the area estimates
in a socio-economic analysis of the factors that in� uence land-use change. Speci� cally,
we are interested in the rates of conversion of lands to more intensive uses, such as
the conversion of natural vegetation or agricultural lands to urban land-uses. The
purpose of this paper is to report on our eVorts to provide estimates of land-use
change between 1988 and 1996 in the Pearl River Delta using Landsat Thematic
Mapper (TM) imagery.

2. Land-use versus land-cover change
Satellite imagery has been well utilized in the natural science communities for

measuring qualitative and quantitative terrestrial land-cover changes (Coppin and
Bauer 1994, Collins and Woodcock 1996, Gopal and Woodcock 1996, Pax Lenney
et al. 1996). Qualitative changes in landscapes occur either as natural phenomena
(wild� res, lightning strikes, storms, pests) or can be human induced (selective logging,
agroforestry) . Quantitative land-cover change is the wholesale categorical trans-
formation of the land, and although it can occur as a natural phenomenon as caused
by � res and storms, large-scale replacement of one land-cover type by another is
usually induced by human activity (forest clearing, agricultural expansion, urban
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growth). Both qualitative and quantitative changes in land-cover have been
successfully monitored with remote sensing, with research dominated by eVorts at
monitoring change in vegetation and forest canopies (Collins and Woodcock 1994,
Macleod and Congalton 1998).

More recently, social scientists have begun to use satellite imagery to address
issues at the interface of economics, politics and the natural environment. Among
these research activities is the attempt to integrate remote sensing with socio-
economic data in order to understand the anthropogenic causes of land conversion
(Skole et al. 1994). However, because satellites observe land-cover and not land-use,
the eVort to link remotely sensed observations of the landscape with human activity
on the ground requires data diVerent from conventional remote sensing studies. For
these cross-disciplinary, integrated studies, a core requirement is information on how
land is used.

In many remote sensing change detection studies, land-use and land-cover often
are used interchangeably (Green et al. 1994, Dimyati et al. 1996, Heikkonen and
Var� s 1998). Land-use often corresponds to a land-cover type and, in these instances,
the concepts are synonymous. For example, a pasture is a land-use but also describes
the land-cover. Urban areas refer to both a type of land utilization (residential,
commercial, industrial, transportation) and a particular land-cover (concrete, steel,
brick). In cases like this where there is a direct relational correspondence between
land-use and land-cover, the two concepts are essentially identical. However, this
direct relationship does not always exist. For these situations, it is important to
distinguish land-use from land-cover; the latter measures the physical attributes,
condition and characteristics of the Earth’s surface, while the former describes how
the land-cover is utilized. Particularly for applications that link remote sensing with
human activity, this diVerentiation is important because land-use emphasizes the
functional role of land in economic activities (Campbell 1983) while land-cover does
not. Therefore confounding land-cover with land-use may generate biased results in
these studies.

3. Monitoring urbanization with remote sensing
A number of change detection techniques have been developed over the last

20 years. They include image diVerencing, image regression, image ratioing, vegeta-
tion index diVerencing, principal component analysis, change vector analysis, post-
classi� cation subtraction and vegetation index diVerencing (Singh 1989). Although
these methods have been successful in monitoring change for a myriad of applications,
there is no consensus as to a ‘best’ change detection approach. The type of change
detection method employed will largely depend on data availability, the geographic
area of study, time and computing constraints, and type of application.

An increase in urban structures and a decrease in vegetation cover usually
characterize development. Previous work using TM data to map urban areas had
limited success. Although the high spatial resolution of TM allows for better discrim-
ination of urban features such as road networks, the spatial variance for an urban
environment is high (Woodcock and Strahler 1987). This heterogeneous nature of
urban areas makes it particularly diYcult to classify (Haack et al. 1987, Khorram
et al. 1987, Møller-Jensen 1990). Forster (1993) shows that radiometric variation is
a function of building size and distribution. In regions of the world where urban
features vary signi� cantly by geographic location and access to materials, urban
features may be particularly diYcult to distinguish. Even with 20 m resolution SPOT
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sensor data, Gong and Howarth (1990) had diYculties diVerentiating between paved
surfaces from bare � elds and roofs from bare � elds. More recently, Heikkonen and
Var� s (1998) used neural networks to classify urban areas with high accuracy.

Previous eVorts at monitoring urban development utilized the visible red and
near-infrared bands to delineate between vegetated and non-vegetated areas. Using
Multi-Spectral Scanner (MSS) Band 5 (0.6–0.7 mm) in image diVerencing, Jensen and
Toll (1982) identify urban expansion with 81% accuracy. Their results highlight the
importance of incorporating diVerent stages of urban development in the classi� ca-
tion scheme. Howarth and Boasson (1983) con� rm the use of the MSS red band,
and results indicate that image overlay of MSS Band 5 is superior over a Band 5
(red) ratio, Band 7 (near-infrared) ratio and a vegetation index. Fung (1990) reports
that one type of image transform may not detect all types of changes. For rural to
urban conversions, changes are best detected using multidate Kauth-Thomas change
in brightness (DB) and image diVerencing of TM Band 3. Ridd and Liu (1998)
propose a chi-squared transformation that detects change from farmland to construc-
tion with 87% accuracy and farmland to commercial and industrial areas with 88%
accuracy. However, this method is not superior to conventional techniques such as
image diVerencing, image regression or multi-date Tasseled Cap transformation. Li
and Yeh (1998) use a multi temporal principal components analysis to monitor
urbanization and obtained an overall accuracy of 93%.

DiVerent problems and complexities are presented in monitoring urban develop-
ment in various parts of the world. In parts of the world where city planners have
a model of urban growth, there may be a clear pattern in the development trajectory.
In many developing countries, urban development often occurs along the periphery
of formal urban planning. Usually, these projects diVer in scale and magnitude from
their counterparts in developed countries. For example, in developed countries, urban
development generally is undertaken by construction � rms with mechanized equip-
ment, facilitating the rapid construction of industrial, commercial and residential
complexes. In addition, the availability of fossil-fuel powered equipment subsidizes
human eVort, and the scale of the projects can be large. In China, where labour is
abundant and inexpensive, urban development usually occurs with much human
eVort and with little assistance from motorized equipment. In a place where bricks
are laid by hand, the scale of development projects tends to be smaller, and the time
horizon for their completion tends to be longer. Therefore, the pattern of urbanization
in China may sharply contrast those in industrialized countries.

4. Study area, data and data pre-processing
The study area is the Pearl River Delta in the Guangdong Province of Southern

China covered by one Landsat TM scene. The image includes the provincial capital
city of Guangzhou and all of the SEZ of Shenzhen, and part of the SEZ of Zhuhai.
For this study, we acquired two TM scenes from Landsat World Reference System
path 122, row 44 taken on 10 December 1988 and 3 March 1996. Scenes from
diVerent seasons were selected because of the limited availability of cloud-free images
of the Pearl River Delta.

To compare the satellite images taken from diVerent years and seasons, the
images were co-registered to a master image provided by the Institute of Remote
Sensing Applications in Beijing. Using nearest neighbour resampling, a root mean
square error of the � rst-order polynomial warping function of less than 0.30 pixels
was achieved.
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For the radiometric calibration, a number of techniques were tested. The � rst set
are physically based absolute atmospheric corrections where digital numbers (DNs)
were converted to surface re� ectances. However, a simpler empirical technique was
eventually used as it was easier to employ and just as eVective. This method uses a
two-date density plot of DN values in which stable features in the images form a
natural ‘ridge’ in the plot. A line was � tted along the ridge generating a simple linear
relationship between the two images, which was used to match one date to the other.
This approach has limitations if change constitutes a large portion of the image, or
if there are signi� cant seasonal diVerences between images. However, in this case it
proved as helpful as a wide variety of other more complicated atmospheric correction
methods. The methods tested and their results are presented in Song et al. (2000 ).

5. Change detection methodology
A common method of change detection is post-classi� cation image comparison.

One limitation of this method is that the accuracy of the change map typically will
be at best the product of the accuracies of each individual classi� cation for each
date (Lambin and Strahler 1994). A method that circumvents this source of error is
to analyse multidate images using a multi-temporal principal component technique
(Fung and Le Drew 1987). This technique involves performing a principal component
transformation using two dates of data to create new images that are uncorrelated
with each other. The new principal component images are orthogonal to each other
such that the � rst band of information contains the most variance in the original
data, with each succeeding band containing increasingly less variance in the original
data. Although this method is a useful data reduction technique, it can be diYcult
to associate physical scene characteristics with the individual components. Moreover,
this type of analysis is scene dependent and therefore results between diVerent dates
may be diYcult to interpret.

A multidate Tasseled Cap transformation is scene independent and has been
shown to be successful in monitoring change (Fung 1990, Collins and Woodcock
1996). The Tasseled Cap transformation rotates TM data and creates three planes:
Brightness (B), Greenness (G) and Wetness (W) (Crist and Cicone 1984). A substan-
tial diVerence between the Tasseled Cap transformation and principal component
analysis is that the former method employs � xed coeYcients that can be applied to
any scene across dates. The BGW bands are directly associated with physical scene
attributes and therefore easily interpreted. The Brightness band is a weighted sum
of all six re� ective bands and can be interpreted as the overall brightness or albedo
at the surface. The Greenness band primarily measures the contrast between the
visible bands and near-infrared bands and is similar to a vegetation index. The
Wetness band measures the diVerence between the weighted sum of the visible and
near-infrared bands and the mid-infrared bands. As TM Bands 5 and 7 have been
shown to be sensitive to moisture and water absorption, the Wetness band can be
interpreted as a measure of soil and plant moisture.

In BGW space, diVerent land-cover types occupy distinct spectral locations.
Plotted in � gure 1(a) and (b) are mean values from training site data for stable land-
cover and land-use classes. The error bars represent one standard deviation from
the mean for each class. A total of 809 training sites, consisting of 7807 pixels, were
selected for 23 land-cover classes. The distribution of sites for each land-cover class
is shown in table 1. The sites were selected based on visual interpretation of the
images in the laboratory and from � eldwork. In the laboratory, an analyst familiar
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Table 1. Land-covers and map classes for the PRD.*

*Land-covers (centre) and the number of training sites for each category ( left) which
compromise the land-use classes (right).

with the region selected large areas (10–30 pixels) which were representative of the
classes of interest. After this initial area selection, training sites within the areas were
selected during � eldwork in China in February 1998. In the � eld, sites were georefer-
enced using a global positioning system (GPS) and digitized onto the image. Once
in the � eld, some areas which had been selected in the laboratory were omitted from
site selection due to limited access; it was simply not possible to have right of passage
to all areas.

For the change classes, a two-step process was used to determine the land-use
prior to land conversion. First, in the laboratory an analyst familiar with the region
selected areas on the image where a substantial amount of land-use change had
occurred. These areas were then analysed in greater detail to assess the type of land-
use before and after land conversion. Sites within these areas were visited during
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� eldwork in 1998. At the site, if a new urban area was located in the middle of an
agricultural � eld, it was assumed that the land was previously used for agricultural
purposes, and the site was labelled agriculture urban. This conclusion was made
and the change class labelled as such only when the prior land-use was evident from
the surrounding geography. In areas where the prior land-use was not evident,
interviews were carried out with local farmers and other land-users to obtain the
land-use history of the site.

Old urban areas have features that generally exhibit high Brightness, low Wetness
and low Greenness values while new urban, or transition, areas have the highest
Brightness values. In contrast, water has high Wetness, low Brightness and low
Greenness values. Although water and � sh ponds are both water land-cover types,
they exhibit some diVerences in their Greenness values. Crops and forest features
have similar Wetness properties, but diVer in their Greenness values. As land-cover
changes over time, a change in re� ectivity of the surface will exhibit corresponding
changes in BGW values (� gures 1(c) and (d)). Conversion of water to urban areas
results in an increase in Greenness, an increase in Brightness and a decrease in
Wetness. The change from crops to urban areas results in an increase in Brightness,
a decrease in Greenness and a decrease in Wetness. As expected, the conversion of
crops to water results in a decrease in Brightness, a decrease in Greenness and an
increase in Wetness. Compared with new urban areas, croplands have a lower
Brightness value, a higher Greenness value and a higher Wetness value. Conversely,
new urban areas tend to be brighter, less green and less wet than agricultural land.
Therefore, change from agricultural land to new urban areas will increase the
Brightness, decrease the Greenness and decrease the Wetness values of BGW
transforms.

In a six-dimensional space composed of BGW from the � rst date and a change
in BGW between the two dates of imagery, a change vector can be mapped which
traces the starting point of a pixel in date one, and its trajectory in date two. Because
diVerent land-cover types occupy distinct BGW space, it is important to know not
only the magnitude and direction of change, but also the original location of each
cover type in BGW space. BGW values were calculated separately for each date
using standard Tasseled Cap coeYcients (Crist and Cicone 1984), and then the values
of the second date were subtracted from the � rst.

6. Classi� cation process
We use a conceptual model to identify land-use change. Based on the idea that

land-use classes are composed of component land-covers, we used land-cover as a
‘bridge’ between the images and the land-use classes. In essence, we attempt to map
the component land-covers and then aggregate them into land-use and land-use
change classes. In this context, the land-use classi� cation process can be viewed as
an exercise in disaggregation . First, the land-use and land-use change classes which
are constructs relating to human activity or ‘use’ of land are disaggregated into their
component physical manifestations, or land-covers. Secondly, the land-covers are
disaggregated into their component spectral manifestations.

6.1. Step 1: De� ne map classes
The � rst step in our conceptual model is to de� ne stable and change map classes

of interest. The level of detail of the � nal map classes is dependent on end-user
requirements. For our study, the socio-economic analysis will mainly focus on
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the process of urbanization. Consequently, we are largely interested in two types
of land conversion processes: (1) conversion from agriculture to urban areas, and
(2) conversion from natural vegetation to urban areas. Four stable map classes
are identi� ed: water, urban areas, natural vegetation and agriculture. From the
stable classes, we de� ne change classes that will be of primary interest for the
socio-economic analysis.

There may not be all combinations of change classes from the stable classes, as
some change are unidirectional, and other change combinations simply do not occur.
For example, agricultural land may be converted into urban areas, but it is unlikely
that urban areas will be converted into agricultural land. However, agricultural land
may be converted to forests through a tree replanting programme and forests can
be converted for agricultural uses.

In de� ning the change classes, our interest is in the type of land that has been
converted, not in the type of development that has occurred. It is irrelevant whether
development results in the construction of a school, house or factory. Rather, the
primary concern is how the land was used prior to conversion, and whether the land
was used to generate an economic output. There is a higher opportunity cost of
converting land with economic returns compared to converting land with no previous
economic use. We assume that investors and land-users perform a formal or informal
cost–bene� t analysis of converting a parcel of land from its current use to another
use before the conversion occurs.

Economically, there is little diVerence between a pond and a forest if neither is
used to extract a resource or to generate economic revenue. If timber products are
not extracted from the forest and the water from the pond is not used to irrigate
crops or to raise � sh, there is no economic opportunity cost associated with con-
verting the pond or trees into a factory. The only characteristics that distinguish the
pond from the forest are the diVerences in costs associated with preparing the land
for development. However, if the pond were used to raise and harvest � sh and the
forest were used to extract wood products, the opportunity cost of converting these
parcels of land would be the revenue generated from � sh or timber products. For
the land-user or investor to convert an economically viable parcel of land into
another use, the new use of the land must generate more revenue or goods than the
previous use.

Our change classes re� ect this choice strategy. The � ve land-use change classes
are: natural vegetation water, agriculture water, water agriculture, natural
urban and agriculture urban.

6.2. Step 2: associating land-covers with land-uses
After de� nition of the map classes, we identify 23 land-covers that can be associ-

ated with each of the stable and land-use change classes (table 1). The stable natural
vegetation class includes both shrubs and forest. Therefore, a map class that includes
natural vegetation is composed of the land-covers shrub and forest. The stable urban
class includes two main points along the development continuum: (1) areas which
have been cleared and are ready for construction to commence (transition) , and
(2) new urban areas, roads and the older sections of cities and towns. Transition
areas are tracts of land which have been converted from natural vegetation, water
or agriculture, but on which there has not been extensive construction. These parcels
of land are essentially in ‘transition’ in that they are in the earlier stages of the
development process. Sites that were transition in 1988 and either urban or transition
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in 1996 are labelled stable urban areas. Sites that were not transition in 1988 but
are transition in 1996 are labelled as one of the change classes. The stable agriculture

class comprises crops and � sh ponds. Crop types include orchards, rice � elds and

� eld crops.
A change in land-cover may not indicate a change in land-use. For example, � eld

crops may be converted to � sh ponds, which constitutes a change in land-cover.

However, since the agriculture class does not diVerentiate among agriculture type,
the crops � sh pond class includes conversion from orchards, rice � elds or � eld

crops to � sh ponds and is a change in land-cover but not a change in land-use.

Alternatively, a change in land-use may not constitute a change in land-cover. The

water agriculture class represents a speci� c region of the Delta where the water is
being reclaimed for crop production and � sh farms. This class includes water � sh

pond and water crops. The water � sh pond class is a change in land-use, but

not a change in land-cover. Since both reservoirs and � sh ponds are water bodies,

diVerentiating between them can be diYcult but is frequently possible because � sh

ponds diVer in texture, tone and size from reservoirs. Anniversary date images may

help alleviate some of the problems associated with changes due to crop phenology

or the agricultural cycle that may show up as changes in land-cover but are not
changes in land-use. However, anniversary date images are not always available and,

even when they are available, diVerences in crop rotation, rainfall patterns and

phenological maturation result in changes in spectral characteristics. Consequently,

it cannot be assumed that changes in land-cover are indicative of changes in land-

use, or that changes in land-use can be directly measured by changes in land-cover.

The natural vegetation water class is de� ned as land that was previously either

forest or shrubland and converted into a reservoir. The agriculture water class

includes diVerent types of crops which were converted into reservoirs. The
natural urban class is composed of a number of land-covers, and includes both

natural vegetation and water that were converted into urban or transition areas.

The natural vegetation and water classes were aggregated into a single ‘natural’

land-use class to represent the conversion of land with no prior economic use. The

rationale behind combining both land-covers into one land-use change class is that

this represents conversion from a non-economic use to an economic use of the land.

The conversion of these areas represents low or no opportunity cost of conversion.
Therefore, we do not diVerentiate between conversion from water or forest to urban

areas. The agriculture urban class includes all types of agriculture that were con-

verted into urban areas or transition areas. Together, the agriculture urban and

natural urban classes account for urbanization in the Delta.

In general, land-use change is more diYcult to map than land-cover change

because the former requires an understanding of the anthropogenic use of the land

and not simply land-cover characteristics. Agriculture is particularly diYcult to
characterize because of the spectral complexity of crop phenology and the variety

of forms of agriculture.

6.3. Step 3: multi-step classi� cation

The 23 stable and change land-covers identi� ed in step 2 were used to classify

land-use change. To characterize the complexity of agriculture and urban areas in
the Delta, a multi-step classi� cation procedure was used (� gure 2).
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Figure 2. Schematic of multi-step classi� cation. aNumber of spectral classes in parentheses.
bEach class was clustered into 10 spectral classes.

6.3.1. Supervised classi� cation
We � rst performed a supervised maximum likelihood classi� cation using a

Bayesian classi� er for the 23 land-covers (table 1). The inputs to the classi� er were
six bands of data: BGW for 1988, and changes in BGW (DB, DG, DW) between
1996 and 1988.

After the supervised classi� cation, visual inspection of the results indicated that
there was a large amount of misclassi� cation in four of the classes: water, forest,
crops and agriculture urban. Much of the shadow in the forests was classi� ed as
water. Separation of the forest class into smaller classes would allow for better
identi� cation of forests in shadow versus in full sun. There was also confusion
between crops and crops urban. The cause of this confusion was probably the
inherent variability within crops. The crops class includes orchards, � eld crops and
rice � elds, which are spectrally disparate types of agriculture. Therefore, a single
training class of crops was too diverse accurately to train the classi� er to identify
disaggregated crop types.

6.3.2. Spectral disaggregation: clustering of training sites
The supervised classi� cation using the 23 land-covers assumes each land-cover

can be characterized spectrally by a single class. Experience has dictated that assump-
tion is invalid for complex classes like crops which can include everything from
inundated rice � elds to sugar cane to orchards to fallow � elds. One approach to
disaggregating spectrally diverse classes is to use each training site as its own separate
training class in the classi� cation process, and then aggregate the appropriate spectral
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classes into map classes after the classi� cation. With 809 training sites, this approach
was not feasible.

To disaggregate spectrally diverse land-covers, all the training sites for a single
land-cover were clustered based on the JeVries-Matusita (JM) distance, which meas-
ures the separability between training sites within a single land-cover (Richards
1995). The JM distance was calculated for all the sites for each class. Rather than
training the data on a single forest class, calculating the JM distance disaggregated
the forest class into smaller classes based on the spectral similarities of the sites.

Clustering was performed on the four classes identi� ed from the supervised
classi� cation results as containing a large amount of misclassi� cation. The single
water class with 34 sites was clustered into seven spectral classes. It may seem
unusual for water to be spectrally diverse. However, variations in turbidity levels,
water depth and chlorophyll content all aVect the spectral properties of water.
Compared to a fresh water reservoir, water at the mouth of the Delta is particularly
opaque due to discharge from the Pearl River. Therefore, it is expected that spectral
re� ectances will diVer between the two water surfaces. The spectral characteristics
of the crops class were particularly diverse owing to diVerences in crop types,
phenology, plot sizes and soil attributes. A single crops class is inadequate in
representing this variation, and therefore the 117 crops sites were separated into 10
spectral clusters. The original 31 forest sites were grouped into six clusters. Forests
vary in tree species, crown structure, canopy density and topography. Forested
mountains in the northern Delta are generally composed of dense pine or mixed
species while bamboo and eucalyptus are more prevalent along riverbanks and in
the southern Delta. The 47 agriculture urban training sites were clustered into
seven spectral classes to capture diVerent starting points and diVerent development
trajectories of the urbanization process. These 30 spectral classes were combined
with the original land-covers to create a dataset with 49 spectral classes which were
used in a supervised maximum likelihood classi� cation (� gure 2).

6.4. Image segmentation
Once the classi� cation was completed, visual inspection of the map indicated

speckle through parts of the map. While previous misclassi� cations within classes
exhibited a pattern (e.g. shadow of forests misclassi� ed as water), the speckle was
distributed throughout the map without a clear pattern. Rather than further
separating the map classes, we used a multi-pass, region-based image segmentation
algorithm to clean up some of the noisier classes and the problem of speckle.

The segmentation process uses the spatial component of an image to grow regions
by merging neighbouring pixels into polygons, based on Euclidean distances
(Woodcock and Harward 1992). One of the advantages of this technique is that it
accounts for multiple scales within an image and yielded more accurate results than
a single-pass � lter. By detecting edges and specifying a minimum size of four pixels
and a maximum polygon size of 1000×1000 pixels, the segmentation process pro-
duces polygons. The resulting polygons are labelled on the basis of the classes of the
pixels inside each polygon using a simple plurality rule, which has the overall eVect
of removing individual isolated pixels, or speckle, from the map.

6.5. Map editing
Following the segmentation process, we conducted a � nal edit of the map. Some

parts of the Delta that are exclusively agriculture were classi� ed as urban while small
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areas in the centre of the city of Guangzhou were classi� ed as crops. Most of these
areas that required further editing were limited to the immediate region around the
city of Guangzhou and areas near the Delta. A possible cause of these geographic
concentrations of misclassi� ed areas is that atmospheric eVects are not uniform
throughout the image. Pollution in the city of Guangzhou creates a haze over the
city, while the atmosphere near the coastal areas is clearer. This uneven distribution
of pollution creates uneven atmospheric eVects. Because a single radiometric calib-
ration was applied to the entire image, there was no geographic correction of
atmospheric eVects. Therefore, editing was necessary to clean up some parts of the
image. This involved relabelling approximately 5% of the entire image. Detailed
knowledge and familiarity of the region was necessary for this type of editing.

7. Land-use change map and accuracy assessment
An example of the land-use change map is presented in � gure 3. In an eVort to

oVset the reduction of agricultural land to urbanization, a large area of the Delta
has been reclaimed for banana, rice and sugar cane production, and � sh farming.
An example of this can be seen in the western section of the Delta in � gure 3. Across
the Delta, the magnitude of urban sprawl in the SEZ of Shenzhen and its environs
is evident.

Figure 3. Land-use change in the Shenzhen region, 1988–1996. The background image is a
full Landsat TM Band 4 acquired in 1995. New urban areas converted from agriculture
lands are represented in green. New urban areas converted from natural vegetation
or water are shown in yellow. New agricultural areas are shown in pink. The two new
water classes (conversion from agriculture or natural vegetation) areaggregated for
easier viewing and represented in magenta.
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An accuracy assessment of the land-use change map was conducted using
validation data entirely independent of the training data. Using a strati� ed random
sampling scheme, 496 2×2 pixel sites were chosen. A strati� ed random sampling
scheme was used to select the sites because the class sizes vary signi� cantly, and a
random sampling scheme may not have selected sites from all map classes in a well-
distributed manner (Congalton 1991). During � eldwork in March and April 1999,
151 sites were analysed, while 345 sites were analysed in the laboratory at Boston
University. In the laboratory, each site was viewed independently by at least two
analysts. Only when both analysts agreed on the class type was the site labelled a
particular class. If there was any discrepancy between two of the analysts, or if any
analyst was unsure of the class for a site, the site was visited in the � eld. The initial
screening of sites in the laboratory avoided the eVort in the � eld of � nding places
where the answer was obvious, such as sites falling in the water in the Delta, in
downtown Guangzhou, or in the forested mountains. Site assessments both in the
laboratory and in the � eld were made without previous knowledge of the other
analysts’ choice of class type, nor of the � nal classi� cation in the map. To assess the
type of land-use prior to conversion, we relied primarily on interviews with land-
users and farmers during � eldwork. In addition, we used similar procedures as those
used for the training data: deductive reasoning in the � eld and analysis of the images
in the laboratory.

Table 2 shows the confusion matrix of sites comparing the � nal map with ground
observations. To calculate overall area-weighted accuracy of the map, the fraction
of correctly labelled sites was weighted by the actual area proportion of each class
(Card 1982). Table 3 shows the confusion matrix of sample sites weighted by the
proportion of each class in the map. Area estimates were adjusted for each of the
� nal classes after incorporating results from the � eld and the area-weighted estimates
(table 4). The area-weighted classi� cation accuracy is 93.5%.

After the � eld visits, the agriculture water class lost almost half of its original
area. Fourteen of the original 29 sites labelled as agriculture water were identi� ed
as other classes in the � eld. Therefore, this class ‘lost’ 14 sites to these other classes.
This left only 15 of the 29 sites labelled correctly as agriculture water. However,
the agriculture water class also ‘gained’ eight new sites. That is, eight sites that
were classi� ed as natural water in the map turned out to be actually
agriculture water sites. Therefore, the agriculture water class ‘gained’ eight sites
during the accuracy assessment. Consequently, the class agriculture water ‘lost’ six
sites. However, because this class represents only 0.06% of the total map, the adjusted
area estimate is only  0.4% change. Conversely, the stable natural vegetation class
on net ‘lost’ three sites which resulted in a change in area estimate of  5.71%.
Because the natural vegetation class accounts for more than 46% of the map, loss
or gain of a site from the accuracy assessment has large impacts on the area estimates
for that class.

The user’s accuracy of the two main classes of interest, agriculture urban and
natural urban were 77.35% and 52.95%, respectively. Although the accuracy for
the natural urban class appears low, most of the confusion was with the
agriculture urban class. If the ‘new urban’ classes were aggregated, the accuracy
would be 86.54%. Alternatively, the accuracy for the agriculture water class is
51.72%, but if the ‘new water’ classes were aggregated, the accuracy would increase
to 77.97%. More than one third of all sites in the agriculture water class were
misclassi� ed. Fieldwork indicated that 11 of the 30 sites were actually � sh ponds
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Table 4. Area estimates and adjusted area estimates of the � nal map classes.*

Map estimate Corrected map estimate Net change

Class (% of total area) (km2 ) (% of total area) (km2 ) (% of map estimate)

water 7.76 2094 7.82 2110 0.77
natural vegetation 46.80 12 626 44.13 11 906  5.71
agriculture 35.06 9457 37.68 10 166 7.47
urban 2.31 624 2.67 720 15.58
agriculture water 0.11 30 0.06 16  0.46
natural vegetation 0.03 9 0.02 5  0.33

water
water agriculture 0.56 151 0.56 151 0.00
natural urban 2.77 748 1.94 529  29.97
agriculture urban 4.58 1240 5.09 1376 11.14

*Totals may not sum to 100 due to rounding.

which had been converted from crops. Although this is a change in land-cover, it
does not represent a change in land-use. This confusion highlights why it is more
diYcult to map land-use than land-cover using only satellite imagery.

8. Discussion
The high accuracy of the map was achieved by applying a conceptual model of

identifying land-use change based on associated land-cover properties, using a
multi-step classi� cation process that accounted for the spectral complexity of many
land-covers, and post-classi� cation map editing. The multi-step classi� cation allowed
large classes to be disaggregated and clustered into � ner spectral classes. A single-
step classi� cation would not have been successful in characterizing the complex
nature of the landscape in the Delta.

The main source of confusion in the map is the agriculture class. The diYculty
in characterizing the agriculture class is evident from the confusion matrix. Because
the agriculture class is diverse and includes a variety of diVerent agriculture types,
there were a number of sites which were misclassi� ed as change classes when they
were actually stable agriculture. In the USA, most farms are large in size with
monocrop production. In China, agriculture occurs at a much smaller scale, which
can be likened to gardening with respect to the size of plots and the variety of crops
produced. Multi-crop � elds, terracing and small � eld sizes produce texture and tones
that can be diYcult to diVerentiate. Agricultural plots are generally small, less than
an acre, but the plots of a village are usually adjacent to each other. The smaller
plots and the variety of crop types within the plots creates heterogeneous surfaces
which are more diYcult to characterize than large area plots of a single monocrop.
Cultivation of vegetables, � sh ponds, and fruit orchards often abut each other, giving
images a heterogeneous texture that is diYcult to characterize.

Conversion of agriculture occurs on a few diVerent scales. An increase in the
income of some farmers has permitted the refurbishing of old and construction of
new homes. The use of new materials often creates a change in spectral signal distinct
from the surrounding agriculture. New homes constructed by farmers generally are
built with brick. After rice has been harvested, rice � elds are essentially bare plots
of soil, which spectrally look similar to land which has been cleared for construction
of new buildings. Only when rice � elds maintain a high level of moisture are they
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spectrally distinct from bright, dry soils. Therefore, the phenological and planting
cycles of rice can be confused with transition areas.

There is signi� cant confusion between the two urbanization classes, agriculture
urban and natural urban. The natural urban class lost one third of its total area
to the agriculture urban class. In this study, the stability of the area estimates is
closely related to the level of detail in the classi� cation. If no distinction were made
between types of urbanization, then the overall accuracy of the map would be higher.

The results indicate that the conceptual model was useful in guiding the identi-
� cation of land-use from land-cover features. Without distinguishing between land-
cover and land-use change, some changes would have been misidenti� ed as land-use
changes when they were only changes in land-cover. Similarly, changes in land-use
that did not create a change in land-cover would have been misclassi� ed as stable
land-use. There are numerous stages and types of urban development in the Delta,
and although it is possible to discern an old urban area from a recently cleared
construction site, it is diYcult to diVerentiate between newer buildings and diVerent
stages of construction. Therefore, it was necessary to include diVerent stages in the
development continuum to better capture the urban development phenology.

Between the period 1988–1996, the Pearl River Delta experienced a scale of land
conversion unprecedented in the history of the country; approximately 1905 km2 of
land was converted to urban uses during this period, an increase in urbanization of
364%. From an estimated 720 km2 of urban area in 1988, or 2.67% of the study
area, the Delta’s urban land increased to over 2625 km2 by 1996. Urban areas now
comprise almost 10% of the study area. While approximately a quarter of the
new urban areas were previously natural vegetation or water, most were converted
from farmland, approximately 1376 km2 . The central and provincial governments
recognize the threat of declining agricultural land, and have supported initiatives
to reclaim part of the Delta for agriculture. Indeed, approximately 151 km2 of the
Delta’s water areas were converted into farmland. However, this increase in
agricultural land oVsets the loss in agricultural land by only 11%. Yet, without a
rigorous study of diVerences in agricultural yield, it is diYcult to assess the impacts
of agricultural land loss on food production and food prices.

9. Conclusions
The results indicate our conceptual model of land-use classes, being composed

of spectrally diverse land-covers, provides a good framework with which to infer
land-use change from land-cover characteristics. The multi-step classi� cation algo-
rithm was necessary to capture the complexity of the landscape, and to map the
changes with a high degree of accuracy. An accuracy assessment was essential to
identify problems in the map and to improve area estimates for each class.
Particularly for a project in which one of the objectives is to obtain area estimates
by land-use class, an accuracy assessment is vital. Moreover, an accuracy assessment
is essential in identi� cation of and correction for errors in misclassifying land-use
versus land-cover changes.

The rate of urbanization and land conversion is unprecedented. Historically, the
Pearl River Delta has been a region of relatively little land conversion and population
growth. Land-use patterns and agricultural practices in much of the Delta have
remained constant for hundreds of years. Given the economic growth that has
directly improved the living standards of most citizens in the Delta, urbaniz-
ation rates of more than 300% between 1988 and 1996 is not unexpected, but still
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impressive. However, since most of the conversion of land is from agriculture, rapid
urban development has potentially serious implications for a number of issues,
including regional food supply and biogeochemistry.
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